
* In the proof of Proposition 1.15, the term ∥Rα∥Hs should be replaced by the sum over
|α| ⩽ s of ∥Rα∥L2 , and in the proof of Proposition 2.2, the term ∥Rε

s∥Hs should be
replaced by ∥Rε

s∥L2 .
* p.31, bottom: “up to replacing V by V + f(0) and f by f − f(0)” should be “up to
replacing V by V + εαf(0) and f by f − f(0)”

In Chapter 2, the continuity argument is not used properly. Even though the results
stated are essentially valid, they are not as precise as they should be. The needed modifi-
cations are listed below.
* p.32: the statement of Proposition 2.2 should be

Proposition. Let Assumptions 1.7 and 2.1 be satisfied. There exists T0 ∈ (0, T ], where T
is given by Proposition 1.9, such that (2.2) has a unique solution aε ∈ C([−T0, T0];H

s0).
Moreover, (aε)ε is bounded in C([−T0, T0];H

s0). If (aε0)ε is bounded in Hs for some
s ⩾ s0, then (aε)ε is bounded in C([−T0, T0];H

s).

This is indeed the result provided by the continuity argument on p.34. Consequently, T
should be replaced by T0 in Corollary 2.4.
* p.35: the statement of Proposition 2.5 is essentially correct, but should be

Proposition. Let Assumptions 1.7 and 2.1 be satisfied, as well as (2.4). Then there exist
C > 0 and ε0 ∈ (0, 1] such that

∥aε − ãε∥L∞([−T,T ];Hs−2) ⩽ C (ε+ ∥aε0 − a0∥Hs−2) , 0 < ε ⩽ ε0.

The fact that T0 can be extended to T stems from the analysis of Section 2.3 (which
shows that ãε remains smooth on [−T, T ]), whose content should therefore be moved
before Proposition 2.5. The assumption that ε should be sufficiently small stems from a
bootstrap argument, since (2.4) and the error estimate show that for ε sufficiently small,
∥aε(t)∥L∞ remains bounded on [−T, T ].
* p.38: in Proposition 2.6, the assumption 0 < ε ⩽ ε0 should be added, for the exact
solution aε need not be smooth up to time T for ε “large”. In addition, a power of ε is
missing in the error estimate, which should read∥∥∥aε − a(0) − εa(1)

∥∥∥
L∞([−T,T ];Hs−4)

⩽ C
(
ε2 + ∥aε0 − a0 − εa1∥Hs−4

)
.

In Chapter 3, some estimates on the modulated energy are not correct.
* p.55, the inequality θ(a) + θ(b) ⩽ Kθ(a + b) is actually false. To overcome this issue,
the following convexity lemma can be used:

Lemma. There exists K > 0 independent of m such that for all ρ′, ρ ⩾ 0,

|Gm(ρ′)−Gm(ρ)− (ρ′ − ρ)G′
m(ρ)| ⩽ K |Fm(ρ′)− Fm(ρ)− (ρ′ − ρ)F ′

m(ρ)| .

This lemma stems from Taylor formula with an integral remainder, and the identities

F ′′
m(y) = f ′

m(y) ; G′′
m(y) = f ′

m(y) + yf ′′
m(y).

Setting, for y ⩾ 0, h(y) = yσ/(1 + yσ) we have:

f ′
m(y) = δ1−σ

m h′(δmy) ; f ′′
m(y) = δ2−σ

m h′′(δmy).

Moreover,

h′(y) =
σyσ−1

(1 + yσ)2
⩾ 0.
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Therefore, to prove the lemma, it suffices to note that

yh′′(y) = h′(y)× σ − 1− (σ + 1)yσ

1 + yσ
,

hence for all y ⩾ 0,
|yh′′(y)| ⩽ Ch′(y).

The lemma implies
d

dt
Hε

m ⩽ C
(
Hε

m + ε2
)
+ om→∞(1),

for some C independent of m, and the conclusion follows like on p.55.
* p.70, a gradient is missing in the first displayed equation, which should be:

∂t Re
(
aa(1)

)
+∇Φ · ∇Re

(
aa(1)

)
= −1

2
div

(
|a|2∇Φ(1)

)
− Re

(
aa(1)

)
∆Φ.


