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Fourier time splitting methods for the nonlinear Schrödinger equation

(1) i∂tu+
1

2
∆u = f

(
|u|2
)
u, t > 0, x ∈ Rd,

with u : [0, T ]×Rd → C, and f : R+ → R, consist in solving alternively

(2) i∂tu+
1

2
∆u = 0,

and

(3) i∂tu = f
(
|u|2
)
u.

Thanks to the Fourier transform, (2) is solved explicitly, and since the ordi-
nary differential equation (3) turns out to be linear (after one has remarked that
∂t(|u|2) = 0, since f is real-valued), an explicit formula is available as well. De-
noting by Xt the flow associated to (2), and by Y t the flow associated to (3), Lie
splitting method consists in considering Z∆t

L = Y ∆t ◦X∆t or Z∆t
L = X∆t ◦ Y ∆t.

Higher order Fourier time splitting methods can be considered on the same basis,
such as Strang splitting, Z∆t

S = X∆t/2 ◦ Y ∆t ◦ X∆t/2 for instance. The conver-
gence of such methods as the time step ∆t goes to zero has been established in
[2] (d 6 2) and [6] (d = 3). Typically, one has the following result in the cubic
defocusing case f(|u|2)u = |u|2u. For u0 ∈ H2(Rd) and all T > 0, ∃C, h0 such as
if ∆t ∈]0, h0], ∀n ∈ N with n∆t ∈ [0, T ],

(4)
∥∥∥(Z∆t

L

)n
u0 − u(n∆t)

∥∥∥
L2

6 C (m2, T ) ∆t,

with mj = max
06t6T

‖u(t)‖Hj(Rd).

In the semiclassical case

(5) iε∂tu
ε +

ε2

2
∆uε = f

(
|uε|2

)
uε, ε→ 0,

considered in numerical experiments in [1], and motivated by Physics (superfluids,
Bose–Einstein condensation), the above error estimate becomes irrelevant. Typi-
cally, consider WKB type initial data,

(6) uε(0, x) = a0(x)eiφ0(x)/ε,

with a0 a smooth complex-valued function, and φ0 a smooth real-valued function.
It is easy to see that, even in the case φ0 = 0, the scaling of (5) forces the presence
of rapid oscillations in uε, which is ε-oscillatory. Therefore, in (4), the factor m2

behaves like ε−2 as ε → 0, and (4) becomes rather unsatisfactory. To overcome
this issue, the idea is that the splitting scheme preserves the WKB form (6), in the
following sense: at least for some time, the numerical solution, at time tn = n∆t,
is of the form

(7) uεn(x) = aεn(x)eiφ
ε
n/ε,
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where aεn and φεn must be expected to depend on ε, but remain bounded in Sobolev
spaces uniformly in ε ∈ (0, 1]. A similar property holds for the exact solution uε:
seeking uε = aεeiφ

ε/ε, one is led to considering the system

(8)


∂tφ

ε +
1

2
|∇φε|2 = −f

(
|aε|2

)
,

∂ta
ε +∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε.

Letting ε = 0 in (8), and considering (v = ∇φ, a) as a new unknown, one recovers
the compressible Euler equation with pressure law related to f , in its symmetric
form. For that reason, we must consider time for which the solution to

(9)

{
∂tv + v · ∇v +∇f (ρ) , v|t=0 = ∇φ0,

∂tρ+ div(ρv) = 0, ρ|t=0 = |a0|2,

remains smooth. Then the time splitting scheme applied to (5) preserves the form
(7), and amounts to doing time splitting on (8). Unfortunately, by this remark,
we see that one has to face a loss of regularity issue, which brings us to make the
following assumption:

Assumption 1. The nonlinearity f is of the form f(ρ) = K ∗ ρ, where the kernel
K is such that its Fourier transform satisfies:

• If d 6 2,

sup
ξ∈Rd

(1 + |ξ|2)|K̂(ξ)| <∞.

• If d > 3,

sup
ξ∈Rd

|ξ|2|K̂(ξ)| <∞.

Typically, this includes the case of Schrödinger-Poisson system if d > 3, where
f(ρ) is given by the Poisson equation

∆f = λρ, f,∇f → 0 as |x| → ∞,
with λ ∈ R. Our main result is he following.

Theorem 2. Suppose that d > 1, and that f satisfies Assumption 1. Let (φ0, a0) ∈
L∞(Rd)×Hs(Rd) with s > d/2 + 2, and such that ∇φ0 ∈ Hs+1(Rd). Let T > 0
be such that the solution to (9) satisfies (v, ρ) ∈ C([0, T ];Hs+1 × Hs). Consider
uε = Stεu

ε
0 solution to (5) and uε0 given by (6). There exist ε0 > 0 and C, c0

independent of ε ∈ (0, ε0] such that for all ∆t ∈ (0, c0], for all n ∈ N such that
tn = n∆t ∈ [0, T ], the following holds:
1. There exist φε and aε with

sup
t∈[0,T ]

(
‖aε(t)‖Hs(Rd) + ‖∇φε(t)‖Hs+1(Rd) + ‖φε(t)‖L∞(Rd)

)
6 C, ∀ε ∈ (0, ε0],

such that uε(t, x) = aε(t, x)eiφ
ε(t,x)/ε for all (t, x) ∈ [0, T ]×Rd.

2. There exist φεn and aεn with

‖aεn‖Hs(Rd) + ‖∇φεn‖Hs+1(Rd) + ‖φεn‖L∞(Rd) 6 C, ∀ε ∈ (0, ε0],
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such that (Z∆t
ε )n

(
a0e

iφ0/ε
)

= aεne
iφn/ε, and the following error estimate holds:

‖aεn − aε(tn)‖Hs−1 + ‖∇φεn −∇φε(tn)‖Hs + ‖φεn − φε(tn)‖L∞ 6 C∆t.

Note that in the above result, the phase/amplitude representation of the exact
solution uε and the numerical solution is not unique. This result shows in par-
ticular that the splitting solution remains bounded in L∞, uniformly in ε, in the
WKB regime. Also, this result shows that it is possible to approximate the wave
function uε provided that ∆t = o(ε), and to approximate quadratic observables
provided that ∆t = o(1): the time step can be chosen independent of ε ∈ (0, 1],
which agrees with the numerical observations made in [1].

The proof of this result then relies on a general strategy used in [5], a general
local error formula for Lie splitting scheme derived in [4], and on various estimates.
The details are available in [3].
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