On time splitting for NLS in the semiclassical limit
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Fourier time splitting methods for the nonlinear Schrédinger equation

(1) 10w + %Au =f (\u|2) u, t>0, zeR%,

with u : [0,7] x R? — C, and f : Ry — R, consist in solving alternively
(2) 10w + %Au =0,

and

(3) iu = f (Jul*) u.

Thanks to the Fourier transform, is solved explicitly, and since the ordi-
nary differential equation turns out to be linear (after one has remarked that
d:(Jul?) = 0, since f is real-valued), an explicit formula is available as well. De-
noting by X* the flow associated to 7 and by Y the flow associated to , Lie
splitting method consists in considering Z2! = YAt o XAt or Z8t = XAt o YAL
Higher order Fourier time splitting methods can be considered on the same basis,
such as Strang splitting, Z8! = XA%/2 0 YAt o XAt/2 for instance. The conver-
gence of such methods as the time step At goes to zero has been established in
2] (d < 2) and [6] (d = 3). Typically, one has the following result in the cubic
defocusing case f(|u|?)u = |u|?u. For ug € H*(R%) and all T > 0, 3C, hg such as
if At €]0, ho], ¥n € N with nAt € [0,T],

(4) H (ZLAt)n g — u(nAt)HL2 < C (mg, T) At,

with m; = Orilta%XT ||u(t)||Hj(Rd).

In the semiclassical case
2
(5) iedu® + %AuE = f(u?)u®, e—0,

considered in numerical experiments in [I], and motivated by Physics (superfluids,
Bose-Einstein condensation), the above error estimate becomes irrelevant. Typi-
cally, consider WKB type initial data,

(6) u®(0,z) = ao(x)eid’o(””)/g,

with ag a smooth complex-valued function, and ¢g a smooth real-valued function.
It is easy to see that, even in the case ¢¢ = 0, the scaling of forces the presence
of rapid oscillations in u®, which is e-oscillatory. Therefore, in , the factor my
behaves like e72 as ¢ — 0, and becomes rather unsatisfactory. To overcome
this issue, the idea is that the splitting scheme preserves the WKB form @, in the
following sense: at least for some time, the numerical solution, at time t,, = nAt,
is of the form

(7) up,(2) = aj, (x)e" /%,
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where af, and ¢Z, must be expected to depend on ¢, but remain bounded in Sobolev
spaces uniformly in € € (0,1]. A similar property holds for the exact solution u®:
seeking u = ae’®"/¢, one is led to considering the system

1
019" + 5|V P = —f (|a°?),
(8) ’ ) )
ora® + Vo - Va® + §a8A¢E = iiAaE.

Letting e =0 in , and considering (v = V¢, a) as a new unknown, one recovers
the compressible Euler equation with pressure law related to f, in its symmetric
form. For that reason, we must consider time for which the solution to

{ Ow+v-Vu+Vf(p), v== Veo,

(9) ~
Op+div(pv) =0,  pr—o = |aol?,

remains smooth. Then the time splitting scheme applied to preserves the form
(@, and amounts to doing time splitting on . Unfortunately, by this remark,
we see that one has to face a loss of regularity issue, which brings us to make the
following assumption:

Assumption 1. The nonlinearity f is of the form f(p) = K * p, where the kernel
K is such that its Fourier transform satisfies:
o Ifd< 2,
sup (1 + [¢[*)|K(&)] < oo
£eRA
o Ifd >3,
S
sup [¢]7[K(§)] < oo.
£ERA

Typically, this includes the case of Schrodinger-Poisson system if d > 3, where
f(p) is given by the Poisson equation

Af=Xp, f,Vf—=0as|z|— oo,
with A € R. Our main result is he following.

Theorem 2. Suppose that d > 1, and that f satisfies Assumption, Let (¢g,a0) €
L*(R?) x H*(RY) with s > d/2 + 2, and such that Vo € H*TH(R?). Let T > 0
be such that the solution to (9) satisfies (v,p) € C([0,T}; H*! x H*). Consider
u® = Stuf§ solution to and uf given by (6). There exist eo > 0 and C,co
independent of € € (0,g9] such that for all At € (0,col, for all n € N such that
t, = nAt € [0,T), the following holds:

1. There exist ¢° and a® with

sup (la* @l ers ey + 1V ()l rs+1 may + 16°(E) | Lo (ra)) < C, Ve € (0, e0],
such that us(t,z) = a®(t,z)e'*" ¢2)/e for all (t,z) € [0,T] x R
2. There exist ¢S, and af, with

lag | zsray + [IVOn | g1 (ray + 165l Lo ey < O, Ve € (0, 0],
2



such that (Z2H)™ (aoei¢°/€) = ase'®/%, and the following error estimate holds:
laz, = a* ()l gos + IVOG = VO« (tn)ll o + 167 — ¢ ()| e < CAL.

Note that in the above result, the phase/amplitude representation of the exact
solution u® and the numerical solution is not unique. This result shows in par-
ticular that the splitting solution remains bounded in L*°, uniformly in €, in the
WKB regime. Also, this result shows that it is possible to approximate the wave
function u¢ provided that At = o(e), and to approximate quadratic observables
provided that At = o(1): the time step can be chosen independent of € € (0, 1],
which agrees with the numerical observations made in [1].

The proof of this result then relies on a general strategy used in [5], a general
local error formula for Lie splitting scheme derived in [4], and on various estimates.
The details are available in [3].
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