Nonlinear coherent states and Ehrenfest time for Schrédinger equation
RiEMI CARLES
(joint work with Clotilde Fermanian-Kammerer)

We consider the semi-classical limit € — 0 for the nonlinear Schrédinger equa-
tion
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(1) e + %Azpa = V(@) + A 70, (ta) e Re xR 5 9f_g = 46,

with A € R, d > 1. The external potential V is smooth, real-valued, and at most
quadratic:
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We assume that the initial data 1§ is a localized wave packet of the form
@ i) = x e

Such data, which are called semi-classical wave packets (or coherent states), have
been extensively studied in the linear case (see e.g. [2 4L 5] [0, T1]). In particular,
Gaussian wave packets are used in numerical simulation of quantum chemistry
like Initial Value Representations methods (see [12} 13}, [14] and references therein).
These methods rely on the fact that if the data is a wave packet, then the solution
of the linear equation (A = 0) associated with still is a wave packet at leading
order up to times of order C'log (%) such a large (as ¢ — 0) time is called Ehrenfest
time, see e.g. [1L[7,[8]. Our aim here is to investigate what remains of these facts in
the nonlinear case (A # 0), since typically appears as a model for Bose—Einstein
Condensation, where, for instance, V may be exactly a harmonic potential, or a
truncated harmonic potential (hence not exactly quadratic); see e.g. [6l [].
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In the present nonlinear setting, a new parameter has to be considered: the size
of the initial data, hence the factor % in . There exists a notion of criticality
for g: for 8 > B, := 1/(20) + d/4, the initial data are too small to ignite the
nonlinearity at leading order, and the leading order behavior of ¥ as ¢ — 0 is
the same as in the linear case A = 0, up to Ehrenfest time. On the other hand, if
8 = B, the function ¢ is given at leading order by a wave packet whose envelope
satisfies a monlinear equation, up to a nonlinear analogue of the Ehrenfest time.
We show moreover a nonlinear superposition principle: when the initial data is the
sum of two wave packets of the form , then )¢ is approximated at leading order
by the sum of the approximations obtained in the case of a single initial coherent
state.

Up to changing 1° to e %1%, we may assume that the initial data are of order
O(1) in L?(R%), and we consider
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where o = 200.
2
Consider the classical trajectories associated with the Hamiltonian % +V(x):

(4) () = £(t), £(t) = -VV(2(t)); (0) =0, £(0) = &o.

We associate with these trajectories the classical action

) st1= [ (i - viston) as

We observe that if we change the unknown function ¢¢ to u® by
— x(t .
¢6(t71') — €_d/4u‘€ <t, xz \/xg( )) ez(S(t)+£(t)~(w—w(t)))/€’
then, in terms of u® = u®(¢,y), is equivalent
1
i0pu® + §Au€ = Ve(t,y)u® + A [uf|?*7u® 5 uf(0,y) = aly),

where the external time-dependent potential V¢ is given by

(6) Vety) = é (V(@(t) +Vey) = V(x(t) — Ve (VV(x(1),1)) .

and a, = 1 + 70. The real number a. appears as a critical exponent. The

expression @ reveals the first terms of the Taylor expansion of V about the
point z(t). Passing formally to the limit, V¢ converges to the Hessian of V' at z(t)
evaluated at (y,y). One does not even need to pass to the limit if V' is a polynomial
of degree at most two: in that case, we see that the solution ¢ remains exactly a
coherent state for all time. Let us denote by Q(t) the symmetric matrix

Q(t) = Hess V(z(t)).

If A=0or a > a, then ¢° is approximated by ¢y, ., up to time of order C'log %,
where

— x(t )
o (1 3) = e~y (L z \/Ig( )> SO+ (e—a ()

and v is given by
. 1 1
0+ 5Av =5 (QM)y.y)v 5 v(0y) = aly).

In the critical nonlinear case A # 0 and o = a,, we have typically the following
result. Consider the solution to

, 1 1 Y

(7) 0+ 3 0u = S(QWy,y)u+ Mu7u ; u(0,y) = aly),
and let

(8) o (t,x) = e~y <t, z -2t ‘jg(”) SO+EW) @ (1)/e
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Theorem 1. Assume d = 0 = 1, and let a € S(R). There exist C,Cy > 0
independent of €, and €9 > 0 such that for all € €]0,eg],
1
95 = & Oll 2y S VEexD(Cot), 0t < Clog .
Consider now initial data corresponding to the superposition of two wave pack-
ets:

¢E<0,l‘) _ E_d/4a1 (I\_/;l> ei(oc—;c1)'§1/6 +5_d/4a2 (q"\_/»:?> ei(oc—;w){g/e7

with a1, as € S(R), (xl,fl), (1‘2,52) S RQ, and (.131,&1) 7é ($2,§2). For j € {1,2},
(x;(¢),&;(t)) are the classical trajectories solutions to (4) with initial data (z;, ;).
We denote by S; the action associated with (z;(¢),§;(t)) by and by u; the
solution of for the curve x(t) and with initial data a;. We consider ¢ asso-
ciated by (8) with u;,x;,§;, 55, and ¢° solution to with a = a. and the above
data.

Theorem 2. Assume d =0 =1, and let ay,a2 € S(R). Suppose Ey # Ea, where

£2
There exist C,Cy > 0 independent of €, and €9 > 0 such that for all € €]0,¢¢],
1 k—2
[V (t) — 1(t)® — 5O |lL2r) S et 0<t < Clog = with v = T

Even though the profiles are nonlinear, the superposition principle, which is
a property of linear equations, still holds. The assumption E; # FE5 is probably
only technical, but we cannot conclude without it, unless we consider time intervals
which do not depend upon e. Detailed proofs can be found in [3].
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